Nanoantenna array-induced fluorescence enhancement and reduced lifetimes

نویسندگان

  • Reuben M. Bakker
  • V. P. Drachev
  • Zhengtong Liu
  • Rasmus H. Pedersen
  • Hsiao-Kuan Yuan
  • Alexandra Boltasseva
  • Jiji Chen
  • Joseph Irudayaraj
  • Alexander V. Kildishev
  • V. M. Shalaev
  • Reuben M Bakker
  • Vladimir P Drachev
  • Rasmus H Pedersen
  • Alexander V Kildishev
  • Vladimir M Shalaev
چکیده

Enhanced fluorescence is observed from dye molecules interacting with optical nanoantenna arrays. Elliptical gold dimers form individual nanoantennae with tunable plasmon resonances depending upon the geometry of the two particles and the size of the gap between them. A fluorescent dye, Rhodamine 800, is uniformly embedded in a dielectric host that coats the nanoantennae. The nanoantennae act to enhance the dye absorption. In turn, emission from the dye drives the plasmon resonance of the antennae; the nanoantennae act to enhance the fluorescence signal and change the angular distribution of emission. These effects depend upon the overlap of the plasmon resonance with the excitation wavelength and the fluorescence emission band. A decreased fluorescence lifetime is observed along with highly polarized emission that displays the characteristics of the nanoantenna’s dipole mode. Being able to engineer the emission of the dye–nanoantenna system is important for future device applications in both bio-sensing and nanoscale optoelectronic integration. 5 Author to whom any correspondence should be addressed. New Journal of Physics 10 (2008) 125022 1367-2630/08/125022+16$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoantenna enhanced emission of light-harvesting complex 2: the role of resonance, polarization, and radiative and non-radiative rates.

Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here...

متن کامل

Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna.

We investigate the coupling of a single molecule to a single spherical gold nanoparticle acting as a nanoantenna. Using scanning probe technology, we position the particle in front of the molecule with nanometer accuracy and measure a strong enhancement of more than 20 times in the fluorescence intensity simultaneous to a 20-fold shortening of the excited state lifetime. Comparisons with three-...

متن کامل

Near field enhancement in silver nanoantenna-superlens systems

We demonstrate near field enhancement generation in silver nanoantenna-superlens systems via numerical modeling. Using near-field interference and global optimization algorithms, we can design nanoantenna-superlens systems with mismatched permittivities, whose performance can match those with matched permittivities. The systems studied here may find broad applications in the fields of sensing, ...

متن کامل

Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.

Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-labe...

متن کامل

Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays.

It is generally accepted that the lifetimes of the localized plasmonic excitations are inherently controlled by the type of the metals and the shape of the nanoparticles. However, extended plasmonic lifetimes and enhanced near-fields in nanoparticle arrays can be achieved as a result of collective excitation of plasmons. In this article, we demonstrate significantly longer plasmon lifetimes and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008